2,533 research outputs found

    Floating zone process for drawing small diameter fibers of refractory materials

    Get PDF
    New process produces controlled purity, very high strength, single crystal fibers of materials with melting points to 4000 C. Process has been used to make single crystal fibers of highly refractory ceramics such as aluminum oxide, titanium carbide and yttrium oxide

    A comparison of methods for treatment selection in seamless phase II/III clinical trials incorporating information on short-term endpoints

    Get PDF
    In an adaptive seamless phase II/III clinical trial interim analysis data are used for treatment selection, enabling resources to be focussed on comparison of more effective treatment(s) with a control. In this paper we compare two methods recently proposed to enable use of short-term endpoint data for decision-making at the interim analysis. The comparison focusses on the power and the probability of correctly identifying the most promising treatment. We show that the choice of method depends on how well short-term data predict the best treatment, which may be measured by the correlation between treatment effects on short-term and long-term endpoints

    The DiskMass Survey. X. Radio synthesis imaging of spiral galaxies

    Get PDF
    We present results from 21 cm radio synthesis imaging of 28 spiral galaxies from the DiskMass Survey obtained with the VLA, WSRT, and GMRT facilities. We detail the observations and data reduction procedures and present a brief analysis of the radio data. We construct 21 cm continuum images, global HI emission-line profiles, column-density maps, velocity fields, and position-velocity diagrams. From these we determine star formation rates (SFRs), HI line widths, total HI masses, rotation curves, and azimuthally-averaged radial HI column-density profiles. All galaxies have an HI disk that extends beyond the readily observable stellar disk, with an average ratio and scatter of R_{HI}/R_{25}=1.35+/-0.22, and a majority of the galaxies appear to have a warped HI disk. A tight correlation exists between total HI mass and HI diameter, with the largest disks having a slightly lower average column density. Galaxies with relatively large HI disks tend to exhibit an enhanced stellar velocity dispersion at larger radii, suggesting the influence of the gas disk on the stellar dynamics in the outer regions of disk galaxies. We find a striking similarity among the radial HI surface density profiles, where the average, normalized radial profile of the late-type spirals is described surprisingly well with a Gaussian profile. These results can be used to estimate HI surface density profiles in galaxies that only have a total HI flux measurement. We compare our 21 cm radio continuum luminosities with 60 micron luminosities from IRAS observations for a subsample of 15 galaxies and find that these follow a tight radio-infrared relation, with a hint of a deviation from this relation at low luminosities. We also find a strong correlation between the average SFR surface density and the K-band surface brightness of the stellar disk.Comment: 22 pages + Appendix, 16 figures + Atlas, 5 tables. Accepted for publication in Astronomy & Astrophysic

    The DiskMass Survey. VIII. On the Relationship Between Disk Stability and Star Formation

    Full text link
    We study the relationship between the stability level of late-type galaxy disks and their star-formation activity using integral-field gaseous and stellar kinematic data. Specifically, we compare the two-component (gas+stars) stability parameter from Romeo & Wiegert (Q_RW), incorporating stellar kinematic data for the first time, and the star-formation rate estimated from 21cm continuum emission. We determine the stability level of each disk probabilistically using a Bayesian analysis of our data and a simple dynamical model. Our method incorporates the shape of the stellar velocity ellipsoid (SVE) and yields robust SVE measurements for over 90% of our sample. Averaging over this subsample, we find a meridional shape of sigma_z/sigma_R = 0.51^{+0.36}_{-0.25} for the SVE and, at 1.5 disk scale lengths, a stability parameter of Q_RW = 2.0 +/- 0.9. We also find that the disk-averaged star-formation-rate surface density (Sigma-dot_e,*) is correlated with the disk-averaged gas and stellar mass surface densities (Sigma_e,g and Sigma_e,*) and anti-correlated with Q_RW. We show that an anti-correlation between Sigma-dot_e,* and Q_RW can be predicted using empirical scaling relations, such that this outcome is consistent with well-established statistical properties of star-forming galaxies. Interestingly, Sigma-dot_e,* is not correlated with the gas-only or star-only Toomre parameters, demonstrating the merit of calculating a multi-component stability parameter when comparing to star-formation activity. Finally, our results are consistent with the Ostriker et al. model of self-regulated star-formation, which predicts Sigma-dot_e,*/Sigma_e,g/sqrt(Sigma_e,*). Based on this and other theoretical expectations, we discuss the possibility of a physical link between disk stability level and star-formation rate in light of our empirical results.Comment: Accepted for publication in ApJ. 15 pages, 6 figures, 2 tables. An electronic version of Table 1 is available by request, or at http://www.astro.rug.nl/~westfall/research/dmVIII_table1.tx

    Nuclear Flow Excitation Function

    Get PDF
    We consider the dependence of collective flow on the nuclear surface thickness in a Boltzmann--Uehling--Uhlenbeck transport model of heavy ion collisions. Well defined surfaces are introduced by giving test particles a Gaussian density profile of constant width. Zeros of the flow excitation function are as much influenced by the surface thickness as the nuclear equation of state, and the dependence of this effect is understood in terms of a simple potential scattering model. Realistic calculations must also take into account medium effects for the nucleon--nucleon cross section, and impact parameter averaging. We find that balance energy scales with the mass number as AyA^{-y}, where yy has a numerical value between 0.35 and 0.5, depending on the assumptions about the in-medium nucleon-nucleon cross section.Comment: 11 pages (LaTeX), 7 figures (not included), MSUCL-884, WSU-NP-93-

    The Extended Shapes of Galactic Satellites

    Full text link
    We are exploring the extended stellar distributions of Galactic satellite galaxies and globular clusters. For seven objects studied thus far, the observed profile departs from a King function at large r, revealing a ``break population'' of stars. In our sample, the relative density of the ``break'' correlates to the inferred M/L of these objects. We discuss opposing hypotheses for this trend: (1) Higher M/L objects harbor more extended dark matter halos that support secondary, bound, stellar ``halos''. (2) The extended populations around dwarf spheroidals (and some clusters) consist of unbound, extratidal debris from their parent objects, which are undergoing various degrees of tidal disruption. In this scenario, higher M/L ratios reflect higher degrees of virial non-equilibrium in the parent objects, thus invalidating a precept underlying the use of core radial velocities to obtain masses.Comment: 8 pages, including 2 figures Yale Cosmology Workshop: The Shapes of Galaxies and Their Halo

    Identifying adequate models in physico-mathematics: Descartes' analysis of the rainbow

    Get PDF
    The physico-mathematics that emerged at the beginning of the seventeenth century entailed the quantitative analysis of the physical nature with optics, meteorology and hydrostatics as its main subjects. Rather than considering physico-mathematics as the mathematization of natural philosophy, it can be characterized it as the physicalization of mathematics, in particular the subordinate mixed mathematics. Such transformation of mixed mathematics was a process in which physico-mathematics became liberated from Aristotelian constraints. This new approach to natural philosophy was strongly influenced by Jesuit writings and experimental practices. In this paper we will look at the strategies in which models were selected from the mixed sciences, engineering and technology adequate for an analysis of the specific phenomena under investigation. We will discuss Descartes’ analysis of the rainbow in the eight discourse of his Meteorology as an example of carefully selected models for physico-mathematical reasoning. We will further demonstrate that these models were readily available from Jesuit education and literature

    Classes of Multiple Decision Functions Strongly Controlling FWER and FDR

    Full text link
    This paper provides two general classes of multiple decision functions where each member of the first class strongly controls the family-wise error rate (FWER), while each member of the second class strongly controls the false discovery rate (FDR). These classes offer the possibility that an optimal multiple decision function with respect to a pre-specified criterion, such as the missed discovery rate (MDR), could be found within these classes. Such multiple decision functions can be utilized in multiple testing, specifically, but not limited to, the analysis of high-dimensional microarray data sets.Comment: 19 page

    Differential flow in heavy-ion collisions at balance energies

    Full text link
    A strong differential transverse collective flow is predicted for the first time to occur in heavy-ion collisions at balance energies. We also give a novel explanation for the disappearance of the total transverse collective flow at the balance energies. It is further shown that the differential flow especially at high transverse momenta is a useful microscope capable of resolving the balance energy's dual sensitivity to both the nuclear equation of state and in-medium nucleon-nucleon cross sections in the reaction dynamics.Comment: Phys. Rev. Lett. (1999) in pres
    corecore